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PAST 
 
Unlike many x-ray based spectroscopies, which were 
made possible by the advent of synchrotron radiation, 
infrared (IR) spectroscopy has been used for many 
years without the benefits of a synchrotron source.  
Commercial IR spectrometers are equipped with con-
ventional thermal (globar) sources that provide IR 
power that is comparable to the IR radiation emitted 
from a synchrotron.  However, the primary advantage 
of synchrotron IR light is its brightness (defined as the 
photon flux or power emitted per source area and solid 
angle), which is 100-1000 times greater from a syn-
chrotron source (Figure 1) [1].  This brightness advan-
tage is not because the synchrotron produces more 
power, but because the effective source size is small 
and the light is emitted into a narrow range of angles. 
 
High brightness is desirable for any measurement with 
a limited “throughput”, meaning either a small sample 
area, the requirement for a narrow beam, or a combina-
tion of both.  Microspectroscopy is perhaps the best-
known example of a measurement with low through-
put, and the synchrotron source is well suited to this 
technique. 
 
IR microscopes equipped with conventional IR sources 
have been used to examine biological samples for 
nearly 20 years.  IR microspectroscopy has been used 
to examine numerous plant and animal tissues [2].  For 
complex samples such as human tissues, an IR spec-
trum provides a direct indication of sample biochemis-
try.  Figure 2 illustrates IR spectra of a common phos-
pholipid (DMPC, dimyristoylphosphatidycholine), 
protein (hemoglobin), and nucleic acid (a polynucleo-
tide).  The dominant absorption features in the lipid 
spectrum are found in the region 2800-3000 cm-1, and 
are assigned to asymmetric and symmetric stretching 
vibrations of CH3 (2956 and 2874 cm-1) and CH2 (2922 
and 2852 cm-1) groups of the acyl chains.  In addition, 

the strong band at 1736 cm-1 arises from ester C=O 
groups in the lipid.  The protein spectrum has two pri-
mary features, the amide I (1600-1700 cm-1) and amide 
II (1500-1560 cm-1) bands, which arise from specific 
stretching and bending vibrations of the peptide back-
bone.  The frequency of the amide I band is particularly 
sensitive to protein secondary structure.  The nucleic 
acid spectrum also displays C=O stretching vibrations 
from the purine (1717 cm-1) and pyrimidine (1666 cm-

1) bases.  In addition, the region between 1000-1500 
cm-1 contains contributions from asymmetric (1224 cm-

1) and symmetric (1087 cm-1) PO2
- stretching vibra-

tions.   
 
The assignments of various spectral features in biologi-
cal samples have been the subject of numerous publica-
tions, which have been reviewed recently [3].   How-
ever, it should be emphasized that these frequencies are 
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Figure 1.  Synchrotron radiation is 2-3 orders of
magnitude brighter than conventional globar sources
as shown in this plot of the power delivered to a 10
µm sample at f/1.  An estimate of the signal to noise
can also be seen. 
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The high brightness of the synchrotron source allows 
smaller regions to be probed with acceptable S/N [14, 
15].  Indeed, aperture settings smaller than the wave-
length of light can be used; though in this case, diffrac-
tion controls the available spatial resolution [16].  Thus 
for a typical biological specimen, the diffraction-
limited spatial resolution for primary lipid (C-H 
stretch), protein (amide I), and nucleic acid (P-O 
stretch) absorption features is approximately 3, 6, and 
12 µm, respectively.  The improvement in spatial reso-
lution achieved by using a synchrotron IR source has 
only been realized recently, and applications to bio-
logical systems are still in their infancy. 
 
PRESENT 
 
The high spatial resolution of a synchrotron IR source 
permits the chemical mapping of single living cells for 
the first time.  Individual mouse hybridoma B cells 
have been examined during necrosis and also during 
the end phases of mitosis [17].  In these experiments, a 
cytospin was used to deposit cells onto BaF2 disks.  
This technique does not kill the cells, but rather re-
moves excess solution while keeping them hydrated, 
which suspends their activity for several hours.  IR 
maps are collected during this time by automated scan-
ning of the sample on a precision X,Y micro-stage.  
After >8 hours, the cells eventually dehydrate and die.  
In another study, similar cells were examined during 
the process of apoptosis (i.e. programmed cell death), 
where a single cell was probed in 50:50 D2O/H2O 
buffer for several hours while apoptosis progressed 
(J.L. Teillaud, et al., to be published).  Evidence of 



 

tags bound to particular cellular components and even 
antibodies to individual proteins.  Once identified, the 
IR microscope can be used to analyze the chemical 
environment in and around that region of interest.  It 
should be noted that fluorescent labels are generally 
present in extremely low (i.e. nanomolar) concentra-
tions, so they do not interfere with the IR technique; 
they are used exclusively for visualizing a region of 
interest.  Figure 3 illustrates some examples of fluores-
cence visualization techniques that are particularly use-
ful for examining biological specimens.   
 
Since synchrotron radiation has opened the field of IR 
microspectroscopy to the level of cellular and sub-
cellular chemical mapping, it is becoming increasingly 
evident that methods for accurate and objective data 
analysis and interpretation are needed.  Spectral inter-
pretation is often a highly subjective process, a fact that 
is made worse when one considers the many hundreds 
of spectra that are often acquired from a single cell or 
tissue area.  These issues were first realized with the 
development of IR focal plane array detectors, which 
enable individual spectra to be collected at each pixel 
simultaneously, dramatically increasing the data acqui-
t = 1 year

t = 2 year

Normal
Illumination

Fluorescence
Illumination

Phalloidin
(cytoplasm)

DAPI
(nucleus)

Mouse Hybridoma B

Biomarkers in Bone Osteons

5 µm
5 µm

t = 1 year

t = 2 year

t = 1 year

t = 2 year

Normal
Illumination

Fluorescence
Illumination

Phalloidin
(cytoplasm)

DAPI
(nucleus)

Mouse Hybridoma B

Biomarkers in Bone OsteonsBiomarkers in Bone Osteons

5 µm
5 µm

Figure 4.  Normal (top) and fluorescence (bottom)
illumination of a mouse hybridoma B cell (left) and
flourochrome labels in bone osteons (right).  In the
mouse cell, phalloidin is used to label the cytoplasm
and DAPI is used to label the nucleus.  In the bone
tissue, fluorochromes deposited into newly deposited
bone signify bone that is 1 year old (green) and two
years old (orange). 
 

protein aggregation and degradation was clearly ob-
served in the frequency of the amide I band.   
 
With the ability to probe smaller and smaller areas with 
the synchrotron IR microscope, new techniques are 
currently being applied to aid in sample visualization.  
For example, 5 µm-wide layers of newly deposited 
bone have been simultaneously visualized with fluo-
rescence microscopy and probed with the IR micro-
scope [18, 19].   Other visualization techniques include 
the use of polarized light and differential interference 
contrast (DIC).  On the cellular and sub-cellular level, 
these techniques can be used to visualize fluorescent 

sition rate [20, 21].  To date, these detectors have not 
been used with synchrotron sources. 
 
To address these concerns, pattern recognition tech-
niques are currently being developed and applied to IR 
data and correlated with biochemical or histological 
data.  These methods help to remove subjectivity and 
allow realistic processing of large data sets.  The map-
ping of specific functional group intensities and fre-
quencies is perhaps the most straightforward method.  
Using a synchrotron IR source, functional group map-
ping has proven extremely informative in the analysis 
of single living cells [17], bone tissue [22], and Alz-
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 3.  (A) Optical image of a transverse-cut section of human hair illustrating the various regions: medulla
 and cuticle.  Functional group mapping of the hair can be seen for (B) the lipid distribution (2919 cm-1

) the protein distribution (1650 cm-1).  The lipid concentration is highest in the medulla, whereas the protein
 is highest in the cortex.  IR spectra were  collected with a 3x3 µm aperture in 3 µm steps, 32 scans/point
m-1 resolution. 



 

 

heimer’s diseased brain [4].  Most recently, an investi-
gation of human hair has demonstrated that the medulla 
(5-20 µm diameter), cortex (40-100 µm), and cuticle 
(<5 µm) regions of the hair can easily be resolved us-
ing a synchrotron source.  Figure 4 illustrates the dra-
matic differences in the composition of these regions. 
 
More sophisticated pattern recognition techniques, 
such as cluster analysis and linear discriminate analy-
sis, utilize intrinsic features of the IR spectra.  Perhaps 
the earliest application of pattern recognition tech-
niques to biological samples involved the analysis of 
bacterial strains, which were identified by their IR 
spectra using this approach [23].  Other applications 
include the identification of cholesterol accumulation 
in the liver [24], the assignment of breast tumor grade 
[25], and the assessment of Alzheimer’s disease sever-
ity in brain tissue [26].    
 
One particular limitation of these types of spectral 
analyses is the requirement for proper assignment of 
“control” spectra to a particular class of tissue or cellu-
lar component.  Using a conventional IR source, lim-
ited spatial resolution often results in a single spectrum 
containing an average of tissues and cell types present 
in the sample.  The high spatial resolution of the syn-
chrotron IR source dramatically improves the ability to 
obtain representative spectra from  pure tissue and 
even cellular components. 
 
In addition to data analysis, many new methods are 
being developed which allow presentation of these 
complex data sets in a form readily interpreted by the 
non-expert.  Gray scale functional group mapping and 
digital staining have been demonstrated [27] and an 
example can be seen in Figure 5.  In digital staining, 8-
bit gray scale images showing the distribution of three 
tissue components are converted to 8-bit red, green, 
and blue scale images.  These three 8-bit images are 
then combined to produce 24-bit color images.  By 
superimposing the chemical information contained in 
the separate functional group maps, digital staining 
provides a means of visually representing relative pro-
portions of chemical species.   
 
FUTURE 
 
The high brightness of the synchrotron IR source has 
opened the door to cellular and sub-cellular chemical 
imaging of living cells.  With enhanced visualization 
techniques, sub-cellular components can be investi-
gated.  Moreover, the combination of high spatial reso-
lution with excellent S/N will permit the examination 
of ongoing cellular processes in real-time.  Statistical 
methods will play an important role in the analysis of 
large IR spectroscopic data sets, although this field is 
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Figure 5.  (A) Optical image and (B) 24-bit colo
digital stain of a section of skin tumor. The digitall
stained map is produced by combining color-scale
maps for collagen (blue), lipid (red) and nucleic aci
(green).  Results demonstrate that the dermis contain
a high proportion of collagen with some lipi
(blue/purple), the tumor is comprised mainly of nu
cleic acids (green), and the epidermis contains hig
proportions of both nucleic acids and lipids (yellow). 
till in its infancy.  Effective presentation of these data 
ith methods such as gray scale imaging and digital 

taining will be important factors in determining the 
egree to which IR microspectroscopy becomes gener-
lly accepted as a tool for cellular and sub-cellular 
haracterization. 

n addition to microspectroscopic imaging, methods for 
tudying protein folding and reaction dynamics on a 
ub-millisecond time scale are also being developed 
hrough the use of a unique rapid-mix IR flow cell [28].  
ime-dependent phenomena can be probed on even 
horter (i.e. sub-nanosecond) time scales by taking 
dvantage of the pulsed nature of the synchrotron 
ource [29].  No other pulsed IR source spans the large 
pectral range produced by a synchrotron.  In addition, 
ignificant flux in the far-IR regime continues to prove 
seful for the analysis of low frequency, collective 
odes in proteins [30].  Microspectroscopy in the far-

R spectral range has also recently been demonstrated 
31] and will likely be expanded upon in the future as 
ell. 

he pursuit of improved spatial resolution with the 
ynchrotron IR source will continue into the future, 
ased on both conventional (far-field) and possibly 
ear-field techniques.  For example, increasing the 
ptical system numerical aperture by “immersing” the 
pecimen in a high index material (e.g. KRS-5, ZnSe, 
ermanium) can lead to factors of two or higher im-
rovements in the spatial resolution.  In a related tech-
ique, germanium planar waveguide technology has 



 

 

been used to isolate single Xenopus laevis oocytes 
membranes and identify protein and lipid components 
[32].  Near field techniques, where a small (sub-
micron) source of IR is scanned very near to the 
specimen, have been demonstrated with IR laser 
sources [33, 34], and similar technology may be appli-
cable to synchrotron radiation microspectroscopy as 
well. 
 
SYNCHROTRON INFRARED FACILITIES 
WORLDWIDE 
 
Facilities for IR synchrotron radiation can be found 
throughout the world, serving to produce light for the 
scientific community.  The National Synchrotron Light 
Source (NSLS, Brookhaven National Laboratory) pres-
ently operates six IR beamlines, making it a premier 
synchrotron facility for IR investigations [35]. Active 
IR beamlines can also be found at UVSOR, Okasaki 
(Japan); ALS, Berkeley and SRC, Stoughton (USA).  
In Europe, IR activities continue at the SRS, Daresbury 
(UK); LURE, Orsay (France); MAXLAB, Lund (Swe-
den); and at Daϕne, Frascati (Italy).  Other facilities 
that are either planning or considering IR programs 
include Diamond, Rutherford Lab (UK); BESSY II, 
Berlin, ANKA, Karlsruhe and DELTA, Dortmund 
(Germany); Duke-FEL, Durham (USA); CLS, Saska-
toon (Canada); LNLS, Campinas, (Brazil); CAMD, 
Baton Rouge, (USA); SURF-3, Gaithersburg (USA); 
NSRL, Hefei (China); SPring8, Nishi-Harima (Japan); 
and SRRC, Hsinchu (Taiwan).  Based on the increasing 
interest in synchrotron IR radiation, it is clear that the 
application of synchrotron IR spectroscopy to biologi-
cal problems has a bright future. 
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